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Abstract

Fully-developed steady ¯ow of granular material down an inclined chute has been a subject of much
research interest, but the e�ect of the interstitial gas has usually been ignored. In this paper, new
expressions for the drag force and energy dissipation caused by the interstitial gas (ignoring the
turbulent ¯uctuations of the gas phase) are derived and used to modify the governing equations derived
from the kinetic theory approach for granular±gas mixture ¯ows, where particles are relatively massive
so that velocity ¯uctuations are caused by collisions rather than the gas ¯ow. This new model is applied
to fully-developed, steady mixture ¯ows down an inclined chute and the results are compared with other
simulations. Our results show that the e�ect of the interstitial gas plays a signi®cant role in modifying
the characteristics of fully developed ¯ow. Although the e�ect of the interstitial gas is less pronounced
for large particles than small ones, the ¯ow®elds with large particles are still very di�erent from granular
¯ows which do not incorporate any interactions with the interstitial gas. 7 2000 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

In the past two decades, many competing theories have been proposed for modelling
rapid granular ¯ows (see, e.g., Ogawa et al., 1980; Jenkins and Savage, 1983; Lun et al.,
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1984; Jenkins and Richman, 1985; Abu-Zaid and Ahamadi, 1990). The numerical results
using a kinetic theory approach for cases where the dissipation is relatively small, and the
particle concentrations range from small to moderate, have shown quite good agreement
with experimental data. However, the e�ect of the interstitial gas has always been neglected
because the interaction between the particles and the gas has been regarded as too complex
to consider.

Recently, Shen and Ackermann (1982) and Shen et al. (1988) began to tackle this problem
by simply adding an energy dissipation term in the equation for the balance of energy. Ma and
Ahmadi (1988) derived a constitutive theory for stresses and ¯uctuational energy ¯ux which
included the e�ect of interstitial ¯uid from the Boltzmann's equation. Aragon (1995)
introduced a turbulent stress and a shear stress into the kinetic-momentum equation.
Moreover, he treated the interstitial ¯uid as an energy dissipater in the energy equation. A
more sophisticated way to integrate the e�ect of interstitial ¯uid is described by Jenkins and
McTigue (1995), who derived the constitutive relations by considering the lubrication forces
between neighbouring spheres for a slow ¯ow of concentrated suspensions. Similarly, Sangani
et al. (1996) studied suspensions where the mean relative velocity between the particles and the
suspension is zero and proposed a convincing expression for the energy dissipation rate derived
from the lubrication forces (which may be interpreted as the dissipation caused by interaction
between ¯uctuations in the two phases). However, theoretical modelling of the granular±¯uid
mixture ¯ow is still at an early stage. The object of this present work is, therefore, to integrate
the e�ect of the interstitial gas into the existing kinetic theory for the rapid granular ¯ow in a
more comprehensive and consistent way than before.

Fully-developed, steady chute ¯ows have also been investigated exhaustively in recent years
(see, e.g., Ahn et al., 1992; Cao et al., 1996; Johnson et al., 1990; Abu-Zaid and Ahmadi,
1993), even though these studies omitted the e�ect of interstitial air. Simulation and modelling
results are, however, still not in good agreement with experiment, mainly because of di�culties
in formulating appropriate boundary conditions and in the rotation of the frictional particles
(which is usually ignored). Here, we will use a new model to investigate the granular±air
mixture ¯ow down a chute, where both particles and chute wall are non-frictional in order to
avoid the errors from omitting the rotational motion of particles. Therefore, the e�ects due to
the interstitial gas will be easily distinguished. The focus of this paper is the di�erence between
dry granular and granular±air mixture ¯ow down a chute in fully developed conditions.

The boundary conditions at the wall are very complicated in a real chute ¯ow and a�ect the
¯ow pro®les substantially. They depend not only on the geometry of the wall but also the
physical properties of the wall and particles. So far, this analysis is at an early stage. Slight
di�erences among boundary conditions lead to large disagreements in the solutions derived
from competing theories. Here, we will adopt simple boundary conditions, modi®ed from
Anderson and Jackson (1992) for a non-frictional wall, which depend on only one
unmeasurable parameter. Because our aim is to examine the e�ects of the interstitial gas, we
will use the same boundary conditions in all cases.

Because of the paucity of available experimental data, we will compare our results with
simulations of other authors in order to capture and exemplify the di�erences in ¯ow pro®les
due to incorporating interstitial gas e�ects in granular ¯ow calculations.
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2. The governing equations

2.1. The governing equations for dry granular ¯ows

The governing equations for rapid ¯ow of dry granular materials are as follows (Lun et al.,
1984)
Continuity equation

dr
dt
� rr � c0 � 0, �1�

Momentum equation:

r
dc0
dt
�r � p � rF, �2�

Energy equation:

3

2
r

dT

dt
� p:rc0 � ÿr � qÿ I, �3�

where r is the bulk density; c0, the mean bulk velocity; p, the stress tensor; q, the ¯ux vector of
pseudo-thermal energy; F, the speci®c gravity force; I, the collisional dissipation rate of
pseudo-thermal energy; T, the `granular temperature' � 1=3hC 2i, and C is the ¯uctuation
velocity. The de®nition of granular temperature is analogous to the de®nition of a gas
temperature. But in the kinetic theory, the gas temperature is de®ned for a gas in a uniform
steady state at rest or in uniform translation. For a gas not in a uniform steady state, the
temperature at any point is de®ned as that for which the same gas, when in a uniform steady
state at the same density, would have the same mean thermal energy per molecule at that point
(Chapman and Cowling, 1970). In the de®nition of granular temperature, the granular ¯ow can
be at any state (see Ogawa, 1978; Jenkins and Savage, 1983). Therefore, when borrowing
results from the kinetic theory of gases, it is important to distinguish this di�erence.

2.2. The contribution of drag force to the governing equations

We will consider the in¯uence of interstitial gas, usually air, in the above equations (1)±(3).
The governing equations are based on an element volume which contains a large number of
particles, so that the particles can be regarded as a continuum phase. Because the molecules of
gas are much smaller than the granular particles, the microstructure scales of the two phases
are very di�erent. The element volume for the particle phase may be too large to allow the
stresses acting on it from the interstitial gas to be regarded as a point-tensor in the stress ®eld
of the whole ¯ow ®eld. Hence, the e�ect of the interstitial gas on this element volume should
be derived by summing the forces on all the individual particles inside it, based on a velocity
distribution function.
If cr is the instantaneous relative velocity between a particle and the gas, the drag force for

one spherical particle, per unit area of the particle body projected on to a plane normal to cr,
is ÿ�1=2�CDe�1ÿ e�rGjcrjcr; hence, the drag force, Fd, per unit volume for one spherical particle
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may be expressed as (Gidaspow, 1994),

Fd � ÿ3
4
CD

e�1ÿ e�
d

rGjcrjcr: �4�

Here, CD is the coe�cient of drag force, which may be obtained from experiment, with suitable
modi®cation for the high volume fraction of particles; e is the volume fraction of the gas phase
in the element (the void fraction); d is the diameter of the spherical particle (we will only
consider uniform spherical particles) and rG is the density of the gas. Following Clift et al.
(1978), we know that CD is a function of the Reynolds number, Re. The equation for drag
coe�cient for a single particle, proposed by KuÈ rten et al. (1966), which is valid in the range of
Re between 0.1 and 4000, with a deviation of less than 7% from experimental data, is:

CD �
�
0:28� 6������

Re
p � 21

Re

�
: �5�

However, due to the e�ect of the other particles in the gas, the equation for the drag coe�cient
for a single particle in a gas should be corrected. The correction function proposed by
Gidaspow and Ettehadieh (1983) is suitable, which gives the coe�cient of drag force as

CD �
�
0:28� 6������

Re
p � 21

Re

�
� eÿ2:65, �6�

where

Re � erGcrd

mG

� erG�cÿ v�d
mG

1
erG�c0 ÿ v�d

mG

: �7�

Here, mG is the viscosity of the gas; v is the velocity of the gas, which we assume is uniform in
the volume element under consideration; and c is the instantaneous velocity of the particles.
Although the expression for the coe�cient of drag involves the instantaneous velocity of the
particles, we will use the average value of Re in the volume element instead of individual values
to simplify the modelling and to provide a ®rst order approximation for the e�ective drag
coe�cient.
The total force Fd�total� acting on the element volume is then,

Fd�total� �
�
Fdf dc � ÿ3

4
CD

e�1ÿ e�
d

rG

�
jcÿ vj�cÿ v�f dc: �8�

If the particles are relatively massive and nearly elastic, the velocity distribution, f, is close to
Maxwellian. Therefore, we obtain,

Fd�total� � ÿ
3

4
CD

e�1ÿ e�
d

rGjc0 ÿ vj�c0 ÿ v�: �9�

The rate of energy dissipation, W, by the drag force may be divided into two parts: W1, due to
the particles' ¯uctuation velocity and W2, caused by the di�erence in the mean velocities of the
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two phases. Although this is another approximation, it is believed that it is su�cient to capture
the essential physics of the dissipation of energy.
Physically, the ®rst part of the rate of energy dissipation, W1, corresponds to a ¯ow where

the mean velocities of gas and particles are equal. Assuming the velocity distribution function
is Maxwellian, i.e.

f �0� � n

�2pT�3=2
exp

�
ÿ C 2

2T

�
, �10�

then,

W1 �
�
Fd � cf dc1ÿ 3

4
CD

e�1ÿ e�
d

rG

�
C ~C � ~cf �0� dc, � ÿ3

4
CD

e�1ÿ e�
d

rG

8
���
2
p���
p
p T 3=2: �11�

The second part of the rate of energy dissipation, W2, is due to any di�erence in the mean
velocities, and is given by:

W2 � Fd�total� � �c0 ÿ v� � ÿ3
4
CD

e�1ÿ e�
d

rGjc0 ÿ vj�c0 ÿ v�2: �12�

Therefore, combined,

W �W1 �W2 � ÿ3
4
CD

e�1ÿ e�
d

rG

 
8
���
2
p���
p
p T 3=2 � jc0 ÿ vj�c0 ÿ v�2

!
: �13�

Now, we can integrate the drag force acting on the element given by Eq. (9) and the energy
dissipation caused by the drag force given in Eq. (13) into the governing equation (1)±(3) for
granular±gas mixture ¯ow. Because the density of the gas is negligible compared to that of the
particles, the buoyancy force need not be considered. Also, the turbulent ¯uctuation of the gas
phase is regarded as negligible, and added mass, the Basset history term and any aerodynamic
lift forces are also ignored. The energy dissipated by the interaction between the ¯uctuations of
the two phases is ignored here, which has been shown to be a major energy dissipation
mechanism in dense suspensions (Sangani et al., 1996; Jenkins and McTigue, 1995). For an
unbounded rapid ¯ow, e.g., the granular-air ¯ow down a chute considered here, this energy
dissipation mechanism is likely to be much less important, however its relative magnitude
compared with the other dissipation mechanism will be examined below.
The modi®ed governing equations for momentum and energy therefore become, respectively:

r
dc0
dt
�r � p � rFÿ 3

4
CD

e�1ÿ e�
d

rGjc0 ÿ vj�c0 ÿ v�, �14�

3

2
r

dT

dt
� p:rc0 � ÿr � qÿ Iÿ 3

4
CD

e�1ÿ e�
d

rG

 
8
���
2
p���
p
p T 3=2 � jc0 ÿ vj�c0 ÿ v�2

!
: �15�
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3. Constitutive theory

According to Lun and Savage (1987), rotational energy comprises no more than 25% of the
translational energy for an in®nitely large frictional coe�cient. Furthermore, Cao et al. (1996)
have shown that the ratio of the rotational ¯uctuation kinetic energy to the translation
¯uctuation energy is of the order of m2, where m is the coe�cient of friction. Therefore, most
theories which include the frictional force omit the e�ects of this rotating motion.
Unfortunately, these theories also depend on many di�cult-to-measure parameters, and their
application regimes are limited. In order to avoid errors from ignoring the rotating motion and
the arbitrary value of some parameters, we restrict ourselves to ¯ows of smooth particles down
a smooth, bumpy and slightly inelastic wall. This will allow the in¯uence of the interstitial gas
to be clearly distinguished. Moreover, this model is consistent with the assumption of
neglecting the aerodynamic lift force caused by rotation of particles in the gas.
For slightly inelastic grains, the stress tensor is composed of the collisional stress, pc, and the

translational stress, pk: Here, we adopt the expressions for p, q and I reported by Lun et al.
(1984), viz.,

p � pk � pc �
��
1� 4Z�1ÿ e�w�rTÿ Zmbr � c0

	
U

ÿ
(

2ma
Z�2ÿ Z�w

�
1� 8

5
Z�3Zÿ 2��1ÿ e�Z

�
� 6

5
mbZ

)
S, �16�

where Z � �1� e�=2, where e is the coe�cient of restitution between particles; U is the unit
tensor and S is the rate-of-shear tensor, given by:

S � 1

2
�c0i, j � c0j, i� ÿ 1

3
c0k, kdi, j: �17�

Also,

ma �
5dr0

������
pT
p

96
, �18�

and

mb �
256ma�1ÿ e�2w

5p
: �19�

The heat ¯ux is also given by,

q � qk � qc � ÿ lb
w

��
1� 12

5
Z�1ÿ e�w

��
1� 12

5
Z2�4Zÿ 3��1ÿ e�w

�
� 64

25p
�41ÿ 33Z��1ÿ e�2�Zw�2

�
rT

ÿ lb
w

�
1� 12

5
Z�1ÿ e�w

�
12

5
Z�2Zÿ 1��Zÿ 1� d

de

��1ÿ e�w�2 T

�1ÿ e�re, �20�
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where,

lb � 25dr0
������
pT
p

16Z�41ÿ 33Z� , �21�

and

I � 48���
p
p Z�1ÿ Z�r0�1ÿ e�2

d
wT 3=2: �22�

In these equations, w is the radial distribution function. In the present work, we adopt the
expression used by Lun and Savage (1987), viz.

w �
�
1ÿ 1ÿ e

em

�ÿ2:5em

, �23�

where em represents the maximum possible particle fraction of the system.

4. Steady, fully-developed chute ¯ow

We will apply our modi®ed governing equations to steady, fully-developed ¯ow down a
smooth, bumpy, inclined chute. We use the ¯ow depth, H, which is the distance from the wall
to the free surface, as a control parameter instead of the ¯ow rate because it simpli®es the
numerical calculations. A Cartesian frame is adopted with y perpendicular to the ¯ow
direction. For steady, fully-developed ¯ow, the mean ¯ow velocity, solid volume fraction and
granular temperature only vary in the y direction. The inclined angle of the chute is denoted by
x:
Non-dimensional variables are introduced as follows,

ŷ � y

d
, û � u�����

dg
p , T̂ � T

dg
, q̂ � q

r0�dg�3=2
, p̂yy �

pyy
r0dg

, p̂xy �
pxy
r0dg

,

ûw � uw�����
dg

p , v̂ � v�����
dg

p ,

�24�

where r � r0�1ÿ e�, and r0 is density of the particle, u is the bulk velocity in the x direction, v
is the mean velocity of the gas in an element, pxy is the shear stress and pyy is the normal
stress.
The continuity equation is thereby automatically satis®ed and, substituting Eqs. (16)±(24)

into Eqs. (14) and (15), the governing equations for a steady, fully developed chute ¯ow are
then:

(a) momentum equations
x direction
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dp̂xy
dŷ
ÿ �1ÿ e�sin x� 3

4
CDe�1ÿ e�rG

r0
�ûÿ v̂�2� 0, �25�

where, u and v are the mean velocities of the particles and interstitial gas, respectively.
y direction

dp̂yy

dŷ
� �1ÿ e�cos x � 0: �26�

(b) energy equation

p̂xy
@ û

@ ŷ
� @ q̂
@ ŷ
� 48���

p
p Z�1ÿ Z��1ÿ e�2wT̂3=2 � 3

4
CDe�1ÿ e�rG

r0

 
8
���
2
p���
p
p T̂

3=2 � �ûÿ v̂�3
!
: �27�

Here, we have assumed the direction of the gas velocity is the same as that of the particle
velocity. The following equations are derived from Eqs. (16) and (20),

p̂xy � ÿf1�e�
5

96

������
pT̂

p dû

dŷ
, �28�

p̂yy �
�
1� 4Z�1ÿ e�w��1ÿ e�T̂, �29�

q̂ � ÿf2�e�
����̂
T

p "
f3�e�@T̂

@ ŷ
� f4�e�T̂ d

de

h
�1ÿ e�2w

i
@e
@ ŷ

#
: �30�

where,

f1�e� � 1

Z�2ÿ Z�w

�
1� 8

5
Z�1ÿ e�w

��
1� 8

5
Z�1ÿ e�w�3Zÿ 2�

�
� 768

25p
Z�1ÿ e�2w, �31�

f2�e� � 25

16

���
p
p

Z�41ÿ 33Z�w , �32�

f3�e� �
�
1� 12

5
Z�1ÿ e�w

��
1� 12

5
Z2�4Zÿ 3��1ÿ e�w

�
� 64

25p
�41ÿ 33Z��1ÿ e�2�Zw�2, �33�

f4�e� � 12

5
Z�2Zÿ 1��Zÿ 1�

�
1� 12

5
Z�1ÿ e�w

�
: �34�

The last term in Eq. (30), which has negligible e�ect on the numerical results according to
Johnson et al. (1990), is neglected in the numerical calculation.
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5. Boundary conditions

5.1. Boundary conditions at a smooth, bumpy and inclined wall

The boundary conditions have to be prescribed accurately in order to solve Eqs. (25)±(27)
for chute ¯ow. But it is di�cult to ®nd a mature existing model even for this simple ¯ow. The
granular ¯ow at the wall cannot be mediated by the external wall in the same way as classical
¯uid mechanics. The wall is an integral part of the whole ¯ow ®eld. For rapid granular ¯ows,
Hui et al. (1984) proposed boundary conditions by considering the collisions between the
grains and the wall. Richman (1988) derived boundary conditions for a bumpy inelastic wall
by assuming the velocity distribution function is Maxwellian. Cao et al. (1996) modi®ed this
model by integrating the friction e�ects of wall and particles. Anderson and Jackson (1992)
established boundary conditions for rapid chute ¯ow based on the work of Johnson et al.
(1990). For the chute ¯ow modelled here, we will adopt their expressions for shear stress and
energy dissipation due to the collision between the wall and particles.
The shear stress generated on the thin ¯ow layer above the wall is given as:

S � ofr0�1ÿ e�uslip

������
3T
p

w, �35�
where f is a `specularity factor', which measures the fraction of the momentum of the incident
particle transferred to the wall. It has the value of zero for perfectly specular rebound and
unity for di�use scattering. The value of f depends on the coe�cient of restitution between
particle and wall, as well as the geometry of the wall. The slip velocity of the particles at the
wall is denoted by uslip:
The energy dissipation term is also given by:

D � a
2
r�3T�3=2�1ÿ ew�w, �36�

where, ew is the coe�cient of restitution between particle and wall, and a and o are
dimensionless proportionality constants of order unity. Here, we follow Johnson et al. (1990)
in adopting:

a � o � p
6em

: �37�

From momentum and energy balance at the boundary, we get

pxy � S, �38�

S � uslip ÿD � q: �39�
Substituting Eqs. (29), (30), (35) and (36) into Eqs. (38) and (39), we obtain the following
expressions:�

1� 4Z�1ÿ e�w�T̂ � ofûslip

������
3T̂

p
w, �40�
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of�1ÿ e�û2
slip

������
3T̂

p
wÿ a

2
�1ÿ e�

ÿ
3T̂
�3=2�1ÿ ew�w

� ÿf2�e�
����̂
T

p "
f3�e�@T̂

@ ŷ
� f4�e�T̂ d

de

h
�1ÿ e�2w

i
@e
@ ŷ

#
: �41�

5.2. Boundary conditions at the free surface

At the free surface, y � H, the following physical boundary conditions must be satis®ed:

e � 1,
@T̂

@ ŷ
� 0,

@ û

@ ŷ
� 0: �42�

6. The numerical method

The ®nite di�erence global scheme described by Reese et al. (1995) for rare®ed gas ¯ows is
used here. The variables ûi,T̂i, and ei, i � 1,2, . . . ,n, may be treated as a vector X � �Xi �T,
whose elements are three-component vectors Xi � �ûi, T̂i, ei �T: On substituting second order
®nite di�erence expressions for the derivatives, Eqs. (25)±(27) with the boundary conditions
(40)±(42) become a non-linear system:

F�X� � 0: �43�
From experimental observations and other computational simulations, large velocity and solid
volume fraction gradients occur at the boundaries. The problem is regarded as sti� and the
numerical grid should be chosen with care. Here, we adopt the grid step, ŷ, suggested by Cao
et al. (1996):

ŷi �
1

2
Ĥ

�
1ÿ cos

�
iÿ 1

nÿ 1
p

��
, i � 1,2,3, . . . ,n: �44�

150 grid points and central ®nite di�erences for the ®rst and second derivatives at every point
have been used to solve the equations. A global Newton iteration procedure is used to solve
the set of nonlinear equations (43). If the variables change is less than 10ÿ4 of their absolute
values between two consecutive iterations and F�Xi � is also less than 10ÿ4 at every point, the
iterations are regarded as converged. In the calculation, it was found that good initial guesses
are very important in ensuring quick convergence.

7. Results and discussion

The pro®les of particle velocity, volume fraction and the granular temperature of dry
granular and grain±air mixture ¯ows down a smooth inelastic chute have been calculated, as
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well as the stresses, energy ¯ux and energy dissipation pro®les. In addition, the in¯uence of
di�erent particle sizes and di�erent velocities of interstitial air has been studied. The lack of
suitable experimental data for comparison means that our results can, at present, be compared
only with other simulations of somewhat-arti®cial cases. However, this does allow some
conclusions to be drawn regarding the quantitative and qualitative di�erences our model
introduces when compared with other models which do not include interstitial gas e�ects.
The parameters of the boundary wall and particles for all cases examined are given in

Table 1. These were chosen to enable direct comparison with other reported results.
In Fig. 1, the results predicted by the present model for dry granular ¯ow of non-frictional

spheres are shown to be in good agreement with the simulation results of Oyediran et al.
(1994) and Cao et al. (1996), both of whom used boundary conditions derived from Richman
(1988). This might imply that the specularity factor can express the di�erent boundary
geometry conditions for a smooth bumpy wall. As far as the in¯uence of the interstitial gas is
concerned (here, the interstitial air is assumed to be at rest), the dimensionless velocity and the
square root of the temperature are small when the ¯ow height is the same as the dry ¯ow. This
may be understood as the drag force damping both the mean and ¯uctuation velocities of the
particles. But the solid volume fraction does not increase, as might be expected under the
condition of constant mass ¯ow rate. Note that, throughout, the ¯ow height is maintained
constant, not the mass ¯ow rate. Hence, if the ¯ow rate is constant, the ¯ow heights for the
mixture ¯ow and dry ¯ow are di�erent when the ¯ows reach the fully-developed steady state.
Using mass ¯ow rate as a design parameter does, however, cause certain di�culties in the
numerical solution.
We can see from Fig. 1(a) and (b) that the ¯ow rate of the mixture ¯ow is smaller

than that of dry ¯ow if the ¯ow heights are the same. Fig. 1(b) shows that the volume
fraction of the particles is nearly uniform from the boundary wall to mid-¯ow, then
decreases rapidly to a very small value. There is a large region near the free surface
where the particle volume fraction is nearly zero. For the granular±air mixture ¯ow,
Fig. 1(c) shows an interesting feature: the granular temperature decreases from the wall
until mid-¯ow height, then it starts to increase again. Surprisingly, this does not appear in
a dry ¯ow. In the following ®gures, we can observe a similar phenomenon in mixture
¯ows with di�erent particle sizes, velocities of the interstitial air and ¯ow heights. This
could be due to the energy being dissipated largely by drag in the air instead of inelastic
collisions when the granular temperature is small.
The e�ect of di�erent sizes of the particles in the granular±air mixture ¯ows can be seen in

Fig. 2. For smaller particles, the e�ect of the interstitial air is larger, as relatively light particles

Table 1
Physical parameters used in the chute-¯ow calculations

ew 0.95 rG 1.2 (kg/m3)
e 0.8 r0 2900 (kg/m3)
x 20.78 f 0.4

mG 1.85� 10ÿ5 (N s/m2) em 0.644
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Fig. 1. H=d � 23, d � 1 mm and v � 0 for the granular±air mixture ¯ow. Comparison with Oyediran et al. (1994)
and Cao et al. (1996). Other parameters as in Table 1. Variation of (a) non-dimensional velocity, (b) particle volume

fraction and (c) non-dimensional granular temperature with non-dimensional ¯ow height.
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can be easily a�ected by the gas ¯ow. The in¯uence of increasing particle size is small for the
larger particles. We will mainly consider relatively massive particles in the ¯ow, because
otherwise the air will play a more important role on the movement of smaller particles and our
model approximations may become inappropriate. Although the pro®les of velocity,
temperature and volume fraction are similar for mixture ¯ows with large particles, these ¯ow
patterns are still very di�erent to the corresponding dry ¯ows. In rapid granular±gas mixture
¯ow at a fully-developed steady state, where the particle phase is dominating the ¯ow, our
model suggests that neglecting the in¯uence of the interstitial gas will lead to signi®cant
inaccuracies, particularly because the in¯uence of the interstitial gas `accumulates' until the
¯ow becomes steady.
Experimentally, it is very di�cult to measure the real ¯ow velocity of the interstitial

air. Moreover, most researchers assume that the interstitial air can be neglected, so very
little data is available. Drake (1991) reported that, in a chute ¯ow where the interstitial
air was at rest initially, the velocity of air was estimated as roughly half of the mean
¯ow velocity of the particles at the fully-developed ¯ow state. In the present model, the
larger the relative motion between air and particle, the more damping in¯uence the
interstitial air has on the particle phase. When we assume the interstitial air is at rest, the
®nal non-dimensional mean bulk velocity is the smallest. This can be seen in Fig. 3(a).
Fig. 3 also shows that, with the relative velocity decreasing, the ¯ow becomes similar to
dry ¯ow. Finally, when the interstitial air shares the same mean velocity with the particle
phase, we obtain the same results as in dry ¯ow. Physically, this is not entirely believable
because the uniform air ¯ow moving at the same mean bulk velocity will still dampen the

Fig. 1 (continued)
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Fig. 2. H=d � 23, d � 1, 5 and 10 mm, respectively. Air velocity v � 0:5u for the granular±air mixture ¯ow.
Variation of (a) non-dimensional velocity, (b) particle volume fraction and (c) non-dimensional granular
temperature with non-dimensional ¯ow height.
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¯uctuations of the individual particles in a volume element and will lead to a small
energy dissipation. But, when the velocity of the interstitial air is not equal to the mean
velocity of the bulk particles, the present model captures the main e�ect of energy
dissipation due to drag in the air.
In Fig. 4(a) and (b), the pro®les of shear and normal stress respectively are presented. In

both ¯ows, the stresses decrease from the wall boundary and tend to zero at the free surface as
expected. It may be noted that the stresses decrease in nearly a linear way in the denser ¯ow
region. Compared to dry ¯ow, the stresses in a mixture ¯ow are smaller, as might be
reasonably physically expected.
In Fig. 5(a), the energy lost due to inelastic collisions e1 and due to the drag force e2 are

compared. In the same ®gure, the energy dissipations in both the dry and mixture ¯ows are
also compared. For a mixture ¯ow, compared with inelastic dissipation, the drag dissipation is
relatively small, especially in the region near the boundary wall. So it may be acceptable to
neglect the e�ect of the drag force in establishing the boundary conditions at the wall. When
the granular temperature decreases, the drag dissipation becomes more important until it is,
indeed, greater than the inelastic collision dissipation. Both the dissipation mechanisms tend to
zero at the free surface. Moreover, the inelastic dissipation is smaller in the mixture ¯ow than
in the dry ¯ow. Fig. 5(b) also shows that the ¯uctuation energy ¯ux is damped signi®cantly by
the interstitial air.
In Fig. 6, all the parameters are the same as in Fig. 1, except the ¯ow height, which is now

set to H � 30; changing the ¯ow height will show the e�ect of altering the mass ¯ow rate. We

Fig. 2 (continued)
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Fig. 3. H=d � 23, d � 1 mm, air velocity v � 0, 0:5u and u, respectively. Variation of (a) non-dimensional velocity,
(b) particle volume fraction and (c) non-dimensional granular temperature with non-dimensional ¯ow height.
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®nd that the interstitial air again plays a signi®cant role in determining the ¯ow pro®le. For
larger particles, increasing particle size causes diminishing change in the results. A similar
phenomenon can be observed here as in Fig. 2, i.e., the slip velocities of the di�erent-particle-
size ¯ows and the dry ¯ow are very close. This implies that the boundary geometry condition
and the properties of the wall are the main factors in generating a slip velocity.
Sangani et al. (1996) proposed the following viscous energy dissipation rate, G ,for a ®xed

bed of particles:

G � 9pmGdnTRdiss, �45�

where n is the number density of the particles and Rdiss is the so-called `e�ective drag
coe�cient' of a spherical particle. Since 1ÿ e � �1=6�pnd 3, our dimensionless form of this
viscous energy dissipation rate is:

g � 54�1ÿ e�Rdissm̂GT̂, �46�

where, m̂G � mG=�r0d 3=2g1=2�, and Rdiss is given by Sangani et al. (1996). A comparison of g and
w1 (the non-dimensional form of our W1 from Eq. (11)) is shown in Fig. 7. Here, w1 may be
caused by the interaction between ¯uctuations of the particles and the mean ¯ow of gas, and g
may be interpreted as the energy which is dissipated by the interaction between the ¯uctuations

Fig. 3 (continued)
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Fig. 4. H=d � 23, d � 1 mm, air velocity v � 0:5u: Variation of (a) non-dimensional shear and (b) non-dimensional

normal stress with non-dimensional ¯ow height.
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Fig. 5. H=d � 23, for granular±air mixture ¯ow d � 1 mm, air velocity v � 0:5u: (a) non-dimensional energy
dissipation by inelastic collisions in the dry ¯ow and granular±air mixture ¯ow, and non-dimensional energy
dissipation by the interstitial air in the granular±air mixture ¯ow; (b) the comparison of non-dimensional ¯uctuation

energy in both ¯ows.
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Fig. 6. H=d � 30, d � 0:5, 1, 5 and 10 mm, respectively. The interstitial air velocity v � 0:5u: Variation of (a) non-
dimensional velocity, (b) particle volume fraction and (c) non-dimensional granular temperature with non-
dimensional ¯ow height.
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Fig. 6 (continued)

Fig. 7. H=d � 23, for a granular±air mixture ¯ow with d � 1 mm, air velocity v � 0:5u: Comparison of two model
non-dimensional energy dissipations, w1 and g:
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in the two phases. Since the two terms are of the same order, if the expression of g can be
taken as valid for the rapid ¯ow of particles down a chute, the ¯uctuation of the gas phase
should be considered. We will, therefore, examine its in¯uence in future work.

8. Conclusions

A new kinetic model which includes both the drag force and the energy dissipation due to an
interstitial gas in the momentum equation and the energy equation, together with smooth
bumpy boundary conditions at a wall, has been used to evaluate the steady-state pro®les of
granular velocity, solid volume fraction and granular temperature of granular±air mixture
¯ows down an inclined chute under gravity. We may draw the following conclusions from the
results:

. The interstitial gas plays an important role in a granular±gas mixture ¯ow.

. Particle size can a�ect the ¯ow: the ¯ow of small particles is damped more by the interstitial
gas.

. With larger particles, the e�ect on the ¯ow of increasing particle size becomes smaller.

. There are large di�erences in the ¯ow pro®les at the fully-developed state between a mixture
¯ow with large particles and a dry ¯ow.

. The relative velocity between the particle phase and the gas phase greatly a�ects a mixture
¯ow.

. Because of the large slip velocity at a smooth inelastic boundary wall, energy dissipation is
largely via inelastic collisions between the particles and the wall. Hence, it is possible to
neglect the in¯uence of the interstitial gas in establishing the boundary conditions for
momentum and energy balance in a thin ¯ow layer above the wall.

. The non-dimensional slip velocity at the wall depends on the geometry of the wall and the
coe�cient of restitution between particles and wall not the interstitial gas, and the particle
size.

. For a low granular temperature, the energy dissipated by the interstitial gas becomes more
important than that dissipated by inelastic collisions.
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